Low-Dimensional Models for Control of Leading-Edge Vortices: Equilibria and Linearized Models

نویسندگان

  • Sunil Ahuja
  • Clarence W. Rowley
  • Ioannis G. Kevrekidis
  • Mingjun Wei
  • Tim Colonius
  • Gilead Tadmor
چکیده

When an airfoil is pitched up rapidly, a dynamic stall vortex forms at the leading edge and produces high transient lift before shedding and stall occur. The aim of this work is to develop low-dimensional models of the dynamics of these leading-edge vortices, which may be used to develop feedback laws to stabilize these vortices using closed-loop control, and maintain high lift. We first perform a numerical study of the two-dimensional incompressible flow past an airfoil at varying angles of attack, finding steady states using a timestepper-based Newton/GMRES scheme, and dominant eigenvectors using ARPACK. These steady states may be either stable or unstable; we develop models linearized about the stable steady states using a method called Balanced Proper Orthogonal Decomposition, an approximation of balanced truncation that is tractable for large systems. The balanced PODmodels dramatically outperform models using the standard POD/Galerkin procedure, and are used to develop observers that reconstruct the flow state from a single surface pressure measurement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Investigation of the Flowfield over a Low Aspect Ratio Wing

A wind tunnel investigation was performed to study the flow field over a 70° swept sharped edge delta wing model at high angles of attack. The experiments were conducted in the subsonic wind tunnel at the Department of Mechanical Engineering, Sharif University of Technology. Velocity profiles have been measured using a special pitot tube and hot wire anemometer at angles of attacks of 10 to 35 ...

متن کامل

An Experimental Investigation of the Flowfield over a Low Aspect Ratio Wing

A wind tunnel investigation was performed to study the flow field over a 70° swept sharped edge delta wing model at high angles of attack. The experiments were conducted in the subsonic wind tunnel at the Department of Mechanical Engineering, Sharif University of Technology. Velocity profiles have been measured using a special pitot tube and hot wire anemometer at angles of attacks of 10 to 35 ...

متن کامل

Closed-Loop Control of Leading Edge Vorticity on a 3D Wing: Simulations and Low-Dimensional Models

We study model-based feedback control of the low-Reynolds-number flow over a flat plate at large angles of attack, in both two and three dimensions. Our long-term goal is to be able to manipulate the leading-edge vortices that form on low-aspect-ratio wings at high angles of attack, and that often contribute to exceptionally large lift coefficients. In two-dimensional simulations, we present a ...

متن کامل

Evaluation of 2-D Aeroelastic Models Based on Indicial Aerodynamic Theory and Vortex Lattice Method in Flutter and Gust Response Determination

Two 2-D aeroelastic models are presented here to determine instability boundary (flutter speed) and gust response of a typical section airfoil with degrees of freedom in pitch and plunge directions. To build these 2-D aeroelastic models, two different aerodynamic theories including Indicial Aerodynamic Theory and Vortex Lattice Method (VLM) have been employed. Also, a 3-D aeroelastic framework ...

متن کامل

Prediction of Vapor-Liquid Equilibria Using CEOS /GE Models

The present study investigates the use of different GE mixing rules in cubic equations of state for prediction of phase behavior of multicomponent hydrocarbon systems. To predict VLE data in multicomponent symmetric and asymmetric mixtures such as systems that contain light gases (nitrogen, carbon dioxide, etc.) and heavy hydrocarbons, the SRK equation of state has been combined with excess Gib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007